

0040-4039(94)01658-5

An Enantiomerically Pure Epoxyorganolithium Reagent for the Synthesis of Oligo(tetrahydrofurans) by an Epoxide-Cascade Reaction

Ulrich Koert*, Holger Wagner and Matthias Stein

Fachbereich Chemie der Philipps Universitit D-35032 Marburg, Germany

Abstract: Enantiomerically pure oligo(tetrahydrofurans) 17 and 18 have been prepared using an epoxide cascade reaction. The polyepoxide precursors 13 and 14 were synthesized using the enantiomerically pure epoxyorganolithium reagent 3. Thus, addition of 3 to the THF aldehyde 11 gave alcohol 12 with a high Cram selectivity of 95:5.

The stereoselective synthesis of 2,5-linked oligo(tetrahydrofurans) (oligo-THFs) is of twofold interest: On one hand oligo-THFs are the key components of the Annonaceous acetogenins, a pharmacologically important class of natural products. $¹$ On the other hand oligo-THFs represent potential</sup> building blocks for a membrane bound ion-channel active polyether helix. 2 As part of our ongoing studies in the oligo-THF area, 3 we were looking for a synthetic route to two THF-trimers with particular stereostructures - compounds of type 1 (trans-syn-trans-anti-cis) and 2 (trans-syn-cis-anti-trans). Here we introduce the use of the enantiomerically pure epoxyorganolithium reagent 3 to solve this synthetic problem.

The compatibility of an epoxide and an organolithium function in the same reagent depends on the distance between them. ⁴ For shorter distances it is impossible to avoid - even at very low temperatures the intramolecular attack of the carbanion on the epoxy ring (e.g. $4 \rightarrow 5$, Scheme 1). ⁵

We hoped that the distance in 3 would be large enough to prevent such an intramolecular side reaction.

The preparation of the organolithium reagent 3 was envisaged by lithium-halogen exchange, thus the corresponding enantiomerically pure iodide **10** was synthesized (Scheme 2).

a) i: NaCN, DMSO; ii: NaOH, H₂O; iii. LiAlH₄, E₁₂O; b) i: (COCl)₂, DMSO, E13N, CH₂Cl_{2,} - 78 ^oC to rt; ii: NaHMDS, THF, - 78 °C, TBDPSOCH₂CH₂CH₂P(Ph)3Br c) i: HOAc, H₂O, THF; ii: MesSO₂Cl, pyridine, 0 °C; iii: K₂CO₃, McOH; d) i: nBu₄NF, THF; ii: tosyl chloride, pyridine; iii: Lil, THF.

The bromide 6^{3b} was converted into the higher homologous alcohol 7 by standard procedures. Swern oxidation of 7 and subsequent Z-selective Wittig reaction 6 gave the olefin 8. Stereocontrolled transformation of the acetonide group into an epoxide produced the epoxy olefin 9. Cleavage of the silylether in 9 and conversion of the resulting alcohol into an iodide gave compound 10. 7

When the iodide 10 was treated with 2 equiv. of t-BuLi in Et₂O at - 90 °C, a clean iodine-lithium exchange occurred (Scheme 3). The resulting epoxyorganolithium reagent 3 was allowed to react with the THF aldehyde **11** to yield the alcohol **12** in 52 % yield. The Cram selectivity of 95:5 in this addition reaction is remarkably high. 8

No byproduct from an intramolecular attack of the organolithium function on the epoxide and/or the double bond was observed.

Epoxidation of the monoepoxy-olefm alcohol 12 gave a 1 : 1 mixture of the two diepoxy **alcohols 13 and 14** (scheme 4). These were directly **submitted to an epoxide-cascade cyclization 9 by addition of ptoluene sulfonic acid to the reaction mixture. The two** THF-trimer alcohols **15 and 16 were obtained, which could be separated by silica gel chromatography.** Both alcohols were **converted separately into the disilylethers 17 and 18.**

To unambiguously assign the stereostructure of the oligo THFs 17 and **18, an independent synthesis** of the THF-trimer **18 was carried** out (scheme 5). For this purpose, we used an established 3ab linear strategy for oligo-THF synthesis.

a) i: CuBr • Me₂S, Et₂O, - 78 to 0 °C; b) i: TsCl, pyridine, 0 °C; ii: HOAc, H₂O, THF, rt; c) NaH, THF, 30 °C, 30 min; d) TBDPSCI, imidazole, DMF.

Chelation controlled reaction **of the Grignard reagent 19 19 with THF-dimer aldehyde 29 3a gave the alcohol 21, which was easily transformed into the dihydroxy tosylate 22.** Five-ring selective intramolecular Williamson reaction 11 of 22 yielded the THF-trimer alcohol 23. After TBDPS **protection the disilylether 18 was obtained, which was identical with the compound 18 of the polyepoxide cascade** route (scheme 4) by TLC, optical rotation and ¹H as well as ¹³C-NMR spectra. ⁷

In summary, a short and efficient synthetic route towards the two THF-trimers 17 (trans-syn-transanti-cis) and 18 (trans-syn-cis-anti-trans) has been developed. Key steps were the highly Cram-selective addition of the epoxyorganolithium reagent 3 to the THF aldehyde 11 and the polyepoxide cascade reactions of the bisepoxy alcohols 13 and 14.

Acknowledgement: Financial support by the Deutsche Forschungsgemeinschaft (SFB 260) as well as the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

- a) Rupprecht, J.K.; Hui, Y.-H.; McLaughlin, J. L. J. Nat. Prod. 1990, 53, 237-278; b) Koert, U. Tetrahedron Lett. 1. 1994, 35, 2517-2520; c) Hoye, T. R.; Hanson, P. R. Tetrahedron Lett. 1993, 34, 5043-5046; d) Harmange, J.-C.; Figadere, B. Tetrahedron Lett. 1993, 34, 8093-8096.
- Koert, U.; Stein, M.; Harms, K. Angew. Chem. 1994, 106, 1238-1240, Angew. Chem. Int. Ed. Engl. 1994, 106, 2. 1238-1240,.
- a) Koert, U.; Stein, M.; Harms, K. Tetrahedron Lett. 1993, 34, 2299-2302; b) Koert, U.; Wagner, H.; Pidun, U. 3. Chem. Ber. 1994, 127, 1447-1457.
- a) Peterson, P. E.; Nelson, D. J.; Risener, R. J. Org. Chem. 1986, 51, 2381-2382; b) Babler, J. H.; Bauta, W. E.;
Tetrahedron Lett. 1984, 25, 4323-4324; c) epoxyorganocopper reagents: Wehmeyer, R. M.; Rieke, R. D. Tetrahed 4. Lett. 1988, 29, 4513-4516; d) Wu, T.- C.; Ricke, R. D. Tetrahedron Lett. 1988, 29, 6753-6756; c) epoxyorganocopper/zinc reagents: Sarandeses, L. A.; Mourino, A. Luche, J.-L. J. Chem. Soc., Chem. Commun. 1992, 798-799.
- Cooke, M. P.; Houpis, I. N. Tetrahedron Lett. 1985, 26, 3643-3646. 5.
- Stork, G.; Hudrilik, P. F. J. Am. Chem. Soc. 1968, 90, 4462-4464. 6.
- All new compounds gave satisfactory analytical and spectral data according to their structures. Representative data for 7. compounds 10, 12, 17 and 18 (a = 300 MHz, CDCl₃, b = 75 MHz, CDCl₃): 10: \cdot (α) D^{20} = + 4.6 (c = 1.00, CHCl3); \cdot ¹H NMR (a): δ = 1.51-1.70 (m, 2H), 2.13-2.65 (m, 4H), 2.48 (dd, J = 5.0/2.7 Hz, 1H), 2.75 (t, J = 4.9 Hz, 1H), 2.89-2.95 (m, 1H), 3.14 (t, J = 7.2 Hz, 2H), 5.32-5.41 and 5.51-5.58 (m, 2H); $-$ ¹³C NMR (b): δ = 5.39, 24.13, 31.46, 32.43, 47.25, 51.93, 128.96, 131.15. 12: ϵ [α] D^{20} = - 3.8, (c = 1.80, CHCl3). - ¹H NMR (a): δ = 1.01 (s, 9H), 1.36-2.23 (m, 12H), 2.43 (dd, J = 5.0/2.7 Fig. 1H), 2.70 (dd, J = 4.9/4.1 Hz, 1H), 2.85-2.91 (m, 1H), 3.61 (d, J = 4.7 Hz, 2H), 3.69-3.84 (m, 2H), 4.04-4.13
(m, 1H), 5.32-5.44 (m, 2H), 7.30-7.38 (m, 6H), 7.59-7.68 (m, 4H). - ¹³C NMR (b): δ = 19.31, 23.76, 23.82, 135.69. 17: \cdot [α] $D^{20} = +7.1$, (c = 1.37, CHCl3). \cdot ¹H NMR (a): $\delta = 1.05$ (s, 18H), 1.55-2.06 (m, 12H), 3.58 (dd, J = 5.3/10.3 Hz, 1H), 3.62 (q, J = 5.6 Hz, 2H), 3.69 (dd, J = 4.1/10.3 Hz, 1H), 3.74-3.83 (m, 3H), 3.84-3.94 (m, 1H), 4.07-4.16 (m, 2H), 7.28-7.40 (m, 12H), 7.63-7.69 (m, 8H). - ¹³C NMR (b): δ = 19.39, 26.99, 27.62, 28.09, 28.53, 28.62, 28.09, 28.53, 28.62, 28.09, 28.53, 28.62, 28.09, 28.53, 28.62, 28.09, 28.53, 28.62, 28.09, 28.53, 28 18: \cdot [α]546²⁰ = + 0.6, (c = 0.80, CHCl₃). ¹H NMR (a): δ = 1.01 (s, 18H), 1.52-2.04 (m, 12H), 3.53-3.64 (m, 3H), 3.68 (dd, J = 4.3/10.2 Hz, 1H), 3.72-3.88 (m, 4H), 4.03-4.11 (m, 2H), 7.28-7.40 (m, 12H), 7.62-7.68 (m, 8H). -13 C NMR (b): $\delta = 19.10$, 26.70, 27.39, 27.77, 27.92, 28.16, 28.73, 28.95, 66.11, 66.33, 79.51, 79.71, 81.49, 81.67, 81.77, 82.32, 127.43, 129.37, 133.65, 135.48.
- a) Cram, D. J.; Abd Elhafez, F. A. J. Am. Chem. Soc. 1952, 74, 5828-5835; b) Ahn, N. T.; Eisenstein, O. 8. Nouveau J. Chim. 1977, 1, 61-70.
- a) H.-J. Altenbach in Organic Synthesis Highlights, (Eds.: J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-J.
Reissig), VCH, Weinheim, 1991, p. 145-150; b) biosynthetic polyepoxide cacscades: D. E. Cane, W. D. Celmer, J 9. Ressigy, VCH, Weinesmith, 1991, 1993, 105, 3594-3600; c) Hoye, T. R.; Suhadolnik, J. C. J. Am. Chem. Soc.
1985, 107, 5312-5313; d) W. C. Still, A. G. Romero J. Am. Chem. Soc. 1986, 108, 2105-2106; e) S. L.
1985, 107, 5312-Chem. Soc., Chem. Commun. 1987, 351-352.
- 10. Küchler, B.; Voß, G.; Gerlach, H. Liebigs Ann. Chem. 1991, 545-552.
- 11. Wagner, H.; Koert, U. Angew. Chem. 1994, 106, in press.

(Received in Germany 16 August 1994; accepted 24 August 1994)